RevARM: A Platform-Agnostic ARM Binary Rewriter for Security Applications
Proceedings of the 33rd Annual Computer Security Applications Conference (ACSAC) 2017.
areas
Security,
Cyber-Physical Systems,
Binary Analysis & Instrumentation
abstract
ARM is the leading processor architecture in the emerging mobile and embedded market. Unfortunately, there has been a myriad of security issues on both mobile and embedded systems. While many countermeasures of such security issues have been proposed in recent years, a majority of applications still cannot be patched or protected due to run-time and space overhead constraints and the unavailability of source code. More importantly, the rapidly evolving mobile and embedded market makes any platform-specific solution ineffective. In this paper, we propose RevARM, a binary rewriting technique capable of instrumenting ARM-based binaries without limitation on the target platform. Unlike many previous binary instrumentation tools that are designed to instrument binaries based on x86, RevARM must resolve a number of new, ARM-specific binary rewriting challenges. Moreover, RevARM is able to handle stripped binaries, requires no symbolic/semantic information, and supports Mach-O binaries, overcoming the limitations of existing approaches. Finally, we demonstrate the capabilities of RevARM in solving real-world security challenges. Our evaluation results across a variety of platforms, including popular mobile and embedded systems, show that RevARM is highly effective in instrumenting ARM binaries with an average of 3.2% run-time and 1.3% space overhead.
related project
The RetroFirm project aims to enhance the security of existing embedded devices by creating retrospective methods for firmware analysis and vulnerability detection.