Web Analytics
S3 Lab - Software & Systems Security Laboratory The University of Texas at Dallas

Find My Sloths: Automated Comparative Analysis of How Real Enterprise Computers Keep Up with the Software Update Races

Omid Setayeshfar, Junghwan Rhee, Chung Hwan Kim, and Kyu Hyung Lee

Proceedings of the 18th Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA) 2021.

DOI: 10.1007/978-3-030-80825-9_11

areas
Security, Operating Systems

abstract

A software update is a critical but complicated part of software security. Its delay poses risks due to vulnerabilities and defects of software. Despite the high demand to shorten the update lag and keep the software up-to-date, software updates involve factors such as human behavior, program configurations, and system policies, adding variety in the updates of software. Investigating these factors in a real environment poses significant challenges such as the knowledge of software release schedules from the software vendors and the deployment times of programs in each user’s machine. Obtaining software release plans requires information from vendors which is not typically available to public. On the users’ side, tracking each software’s exact update installation is required to determine the accurate update delay. Currently, a scalable and systematic approach is missing to analyze these two sides’ views of a comprehensive set of software. We performed a long term system-wide study of update behavior for all software running in an enterprise by translating the operating system logs from enterprise machines into graphs of binary executable updates showing their complex, and individualized updates in the environment. Our comparative analysis locates risky machines and software with belated or dormant updates falling behind others within an enterprise without relying on any third-party or domain knowledge, providing new observations and opportunities for improvement of software updates. Our evaluation analyzes real data from 113,675 unique programs used by 774 computers over 3 years.

related project

CLUE CLUE

The CLUE project develops an infrastructure to detect and diagnose system anomalies in enterprise and cloud systems. These anomalies include stealthy malware and other types of hidden system anomalies. CLUE provides a diverse set of tools to find and understand such anomalies with minimal disruption to the target system.